<div dir="ltr"><font face="arial, helvetica, sans-serif" style="font-size:13px">  BINGHAMTON GEOMETRY/TOPOLOGY SEMINAR<br><br><br>   Date: Thursday, March 19th, 2015<br><br>   Time:  2.50 pm<br><br>   Place: Whitney Hall, Room 100E,  followed by coffee/tea in the<br>      Hilton Reading Room. Note the new location of the math department (</font><a href="http://www2.math.binghamton.edu/p/directions" target="_blank" style="font-size:12.8000001907349px">http://www2.math.binghamton.edu/p/directions</a>)<font face="arial, helvetica, sans-serif" style="font-size:13px">.<br><br><br> </font><font face="arial, helvetica, sans-serif" style="font-size:12.7272720336914px">  </font><font face="arial, helvetica, sans-serif" style="font-size:12.8000001907349px">Speaker: </font><span style="color:rgb(51,51,51);font-family:Arial,sans-serif;font-size:15px;line-height:21px">Matt Zaremsky</span><span style="color:rgb(51,51,51);font-family:Arial,sans-serif;font-size:15px;line-height:21px"> (Binghamton University) </span><div><div style="font-size:12.8000001907349px"><font face="arial, helvetica, sans-serif"><font color="#333333"><span style="line-height:21px">   Title: </span></font></font><span style="color:rgb(51,51,51);font-family:Arial,sans-serif;font-size:15px;line-height:21px">The</span><span style="color:rgb(51,51,51);font-family:Arial,sans-serif;font-size:15px;line-height:21px"> </span><span class="" id="MathJax-Element-1-Frame" style="display:inline;font-size:15px;word-wrap:normal;white-space:nowrap;float:none;direction:ltr;border:0px;padding:0px;margin:0px;color:rgb(51,51,51);font-family:Arial,sans-serif"><span class="" id="MathJax-Span-1" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.892em"><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.725em;height:0px;font-size:18px"><span style="border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-2" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-3" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><img src="https://www2.math.binghamton.edu/js/mathjax-MathJax-727332c/fonts/HTML-CSS/TeX/png/Main/Regular/400/03A3.png" style="border: 0px; vertical-align: 0px; color: rgb(102, 102, 102); font-style: italic; height: 13px; max-width: none; padding: 0px; margin: 0px 0.058em 0px 0px; max-height: none; width: 12px; display: inline !important; float: none !important; background-color: transparent;"></span></span><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0px;height:1.725em"></span></span></span><span style="display:inline-block;border-width:0px 0px 0px 0.003em;border-left-style:solid;padding:0px;margin:0px;vertical-align:-0.063em;overflow:hidden;width:0px;height:1.003em"></span></span></span><span style="color:rgb(51,51,51);font-family:Arial,sans-serif;font-size:15px;line-height:21px">-invariants of Thompson&#39;s group </span><span class="" style="color:rgb(136,136,136);font-family:Arial,sans-serif;font-size:15px;line-height:21px"></span><span class="" id="MathJax-Element-2-Frame" style="display:inline;font-size:15px;word-wrap:normal;white-space:nowrap;float:none;direction:ltr;border:0px;padding:0px;margin:0px;color:rgb(51,51,51);font-family:Arial,sans-serif"><span class="" id="MathJax-Span-4" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.947em"><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.781em;height:0px;font-size:18px"><span style="border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-5" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-6" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><img src="https://www2.math.binghamton.edu/js/mathjax-MathJax-727332c/fonts/HTML-CSS/TeX/png/Math/Italic/400/0046.png" style="border: 0px; vertical-align: 0px; color: rgb(102, 102, 102); font-style: italic; height: 13px; max-width: none; padding: 0px; margin: 0px -0.108em 0px 0px; max-height: none; width: 14px; display: inline !important; float: none !important; background-color: transparent;"><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;overflow:hidden;height:1px;width:0.114em"></span></span></span><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0px;height:1.725em"></span></span></span><span style="display:inline-block;border-width:0px 0px 0px 0.003em;border-left-style:solid;padding:0px;margin:0px;vertical-align:-0.063em;overflow:hidden;width:0px;height:1.003em"></span></span></span><span style="color:rgb(51,51,51);font-family:Arial,sans-serif;font-size:15px;line-height:21px">, via Morse theory </span></div><div style="font-size:12.8000001907349px"><span style="color:rgb(51,51,51);font-family:Arial,sans-serif;font-size:15px;line-height:21px"><br></span></div><div><span style="font-size:15px;color:rgb(51,51,51);font-family:Arial,sans-serif;line-height:21px">   </span><span style="color:rgb(51,51,51);font-family:Arial,sans-serif;line-height:21px">Abstract</span><span style="font-size:15px;color:rgb(51,51,51);font-family:Arial,sans-serif;line-height:21px">: </span><span style="font-size:15px;color:rgb(51,51,51);font-family:Arial,sans-serif;line-height:21px">In a paper published in 2010, Bieri, Geoghegan and Kochloukova computed the</span><span style="font-size:15px;color:rgb(51,51,51);font-family:Arial,sans-serif;line-height:21px"> </span><span class="" id="MathJax-Element-3-Frame" style="font-size:15px;display:inline;word-wrap:normal;white-space:nowrap;float:none;direction:ltr;border:0px;padding:0px;margin:0px;color:rgb(51,51,51);font-family:Arial,sans-serif"><span class="" id="MathJax-Span-7" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.892em"><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.725em;height:0px;font-size:18px"><span style="border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-8" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-9" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><img src="https://www2.math.binghamton.edu/js/mathjax-MathJax-727332c/fonts/HTML-CSS/TeX/png/Main/Regular/400/03A3.png" style="border: 0px; vertical-align: 0px; color: rgb(102, 102, 102); font-style: italic; height: 13px; max-width: none; padding: 0px; margin: 0px 0.058em 0px 0px; max-height: none; width: 12px; display: inline !important; float: none !important; background-color: transparent;"></span></span><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0px;height:1.725em"></span></span></span><span style="display:inline-block;border-width:0px 0px 0px 0.003em;border-left-style:solid;padding:0px;margin:0px;vertical-align:-0.063em;overflow:hidden;width:0px;height:1.003em"></span></span></span><span style="font-size:15px;color:rgb(51,51,51);font-family:Arial,sans-serif;line-height:21px">-invariants (also called Bieri-Neumann-Strebel-Renz invariants) of Thompson&#39;s group </span><span class="" style="color:rgb(136,136,136);font-family:Arial,sans-serif;font-size:15px;line-height:21px"></span><span class="" id="MathJax-Element-4-Frame" style="font-size:15px;display:inline;word-wrap:normal;white-space:nowrap;float:none;direction:ltr;border:0px;padding:0px;margin:0px;color:rgb(51,51,51);font-family:Arial,sans-serif"><span class="" id="MathJax-Span-10" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.947em"><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.781em;height:0px;font-size:18px"><span style="border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-11" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-12" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><img src="https://www2.math.binghamton.edu/js/mathjax-MathJax-727332c/fonts/HTML-CSS/TeX/png/Math/Italic/400/0046.png" style="border: 0px; vertical-align: 0px; color: rgb(102, 102, 102); font-style: italic; height: 13px; max-width: none; padding: 0px; margin: 0px -0.108em 0px 0px; max-height: none; width: 14px; display: inline !important; float: none !important; background-color: transparent;"><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;overflow:hidden;height:1px;width:0.114em"></span></span></span><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0px;height:1.725em"></span></span></span><span style="display:inline-block;border-width:0px 0px 0px 0.003em;border-left-style:solid;padding:0px;margin:0px;vertical-align:-0.063em;overflow:hidden;width:0px;height:1.003em"></span></span></span><span style="font-size:15px;color:rgb(51,51,51);font-family:Arial,sans-serif;line-height:21px">. In recent joint work with Stefan Witzel, we recomputed these using the action of </span><span class="" style="color:rgb(136,136,136);font-family:Arial,sans-serif;font-size:15px;line-height:21px"></span><span class="" id="MathJax-Element-5-Frame" style="font-size:15px;display:inline;word-wrap:normal;white-space:nowrap;float:none;direction:ltr;border:0px;padding:0px;margin:0px;color:rgb(51,51,51);font-family:Arial,sans-serif"><span class="" id="MathJax-Span-13" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.947em"><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0.781em;height:0px;font-size:18px"><span style="border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-14" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><span class="" id="MathJax-Span-15" style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px"><img src="https://www2.math.binghamton.edu/js/mathjax-MathJax-727332c/fonts/HTML-CSS/TeX/png/Math/Italic/400/0046.png" style="border: 0px; vertical-align: 0px; color: rgb(102, 102, 102); font-style: italic; height: 13px; max-width: none; padding: 0px; margin: 0px -0.108em 0px 0px; max-height: none; width: 14px; display: inline !important; float: none !important; background-color: transparent;"><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;overflow:hidden;height:1px;width:0.114em"></span></span></span><span style="display:inline-block;border:0px;padding:0px;margin:0px;vertical-align:0px;width:0px;height:1.725em"></span></span></span><span style="display:inline-block;border-width:0px 0px 0px 0.003em;border-left-style:solid;padding:0px;margin:0px;vertical-align:-0.063em;overflow:hidden;width:0px;height:1.003em"></span></span></span><span style="font-size:15px;color:rgb(51,51,51);font-family:Arial,sans-serif;line-height:21px"> on a certain CAT(0) cube complex called the Stein-Farley complex. The main tool is a version of discrete Morse theory. I will explain what all of these words mean over the course of the talk, and it should be accessible to non-experts.</span></div><div style="font-size:12.8000001907349px"><br></div><div style="font-size:12.8000001907349px"><br></div><div style="font-size:13px"><font face="arial, helvetica, sans-serif">NOTE:  The seminar has a webpage where the semester&#39;s program is listed:<br><br><a href="http://www2.math.binghamton.edu/p/seminars/topsem" target="_blank">http://www2.math.binghamton.<u></u>edu/p/seminars/topsem</a><br><br>It can also be linked from the Department&#39;s Home Page.</font></div></div></div>