<br />
<pre>This week we will meet as usual on Thursday, October 7 at 2:50pm in
WH 100E.  Speaker: <strong>Inbar Klang</strong> (Columbia University) <br
/> Title: Hochschild homology for <span class="MathJax_Preview"
style="color: inherit;"></span><span class="MathJax"
id="MathJax-Element-9-Frame" tabindex="0" style="position: relative;"
data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mi>n</mi></msub></math>"
role="presentation"><nobr aria-hidden="true"><span class="math"
id="MathJax-Span-59" role="math" style="width: 1.35em; display:
inline-block;"><span style="display: inline-block; position: relative;
width: 1.084em; height: 0px; font-size: 123%;"><span style="position:
absolute; clip: rect(1.231em, 1001.08em, 2.379em, -1000em); top: -2.06em;
left: 0em;"><span class="mrow" id="MathJax-Span-60"><span class="msubsup"
id="MathJax-Span-61"><span style="display: inline-block; position:
relative; width: 1.096em; height: 0px;"><span style="position: absolute;
clip: rect(3.182em, 1000.69em, 4.191em, -1000em); top: -4.011em; left:
0em;"><span class="mi" id="MathJax-Span-62" style="font-family:
STIXGeneral; font-style: italic;">C<span style="display: inline-block;
overflow: hidden; height: 1px; width: 0.022em;"></span></span><span
style="display: inline-block; width: 0px; height:
4.011em;"></span></span><span style="position: absolute; top: -3.861em;
left: 0.667em;"><span class="mi" id="MathJax-Span-63" style="font-size:
70.7%; font-family: STIXGeneral; font-style: italic;">n</span><span
style="display: inline-block; width: 0px; height:
4.011em;"></span></span></span></span></span><span style="display:
inline-block; width: 0px; height: 2.06em;"></span></span></span><span
style="display: inline-block; overflow: hidden; vertical-align: -0.259em;
border-left: 0px solid; width: 0px; height:
1.145em;"></span></span></nobr></span>-equivariant things </pre>
<div class="wrap_box plugin_wrap">
<p> <em>Abstract: </em>After introducing Hochschild homology and
topological  Hochschild homology, I will talk about about the twisted
versions of  these that can be defined in the presence of an action of a
finite  cyclic group. I will discuss joint work with Adamyk, Gerhardt,
Hess, and  Kong in which we develop a theoretical framework and
computational  tools for these twisted Hochschild homology theories.</p>
</div>
<pre> </pre>