<div dir="ltr">Hi everyone,<div><br></div><div>Sending out an extra reminder since yesterday was a break. Inbar Klang is speaking today about topological Hochschild homology.</div><div><br></div><div>Best,</div><div>Cary</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Oct 7, 2019 at 4:03 PM <<a href="mailto:sapir@math.binghamton.edu">sapir@math.binghamton.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><br>
<pre>This week we will meet as usual on Thursday, October 7 at 2:50pm in
WH 100E.  Speaker: <strong>Inbar Klang</strong> (Columbia University) <br> Title: Hochschild homology for <span style="color:inherit"></span><span id="gmail-m_4961823584424389510MathJax-Element-9-Frame"><u></u><span id="gmail-m_4961823584424389510MathJax-Span-59" style="width:1.35em;display:inline-block"><span style="display:inline-block;width:1.084em;height:0px;font-size:123%"><span><span id="gmail-m_4961823584424389510MathJax-Span-60"><span id="gmail-m_4961823584424389510MathJax-Span-61"><span style="display:inline-block;width:1.096em;height:0px"><span><span id="gmail-m_4961823584424389510MathJax-Span-62" style="font-family:STIXGeneral;font-style:italic">C<span style="display:inline-block;overflow:hidden;height:1px;width:0.022em"></span></span><span style="display:inline-block;width:0px;height:4.011em"></span></span><span><span id="gmail-m_4961823584424389510MathJax-Span-63" style="font-size:70.7%;font-family:STIXGeneral;font-style:italic">n</span><span style="display:inline-block;width:0px;height:4.011em"></span></span></span></span></span><span style="display:inline-block;width:0px;height:2.06em"></span></span></span><span style="display:inline-block;overflow:hidden;vertical-align:-0.259em;border-left:0px solid;width:0px;height:1.145em"></span></span><u></u></span>-equivariant things </pre>
<div>
<p> <em>Abstract: </em>After introducing Hochschild homology and
topological  Hochschild homology, I will talk about about the twisted
versions of  these that can be defined in the presence of an action of a
finite  cyclic group. I will discuss joint work with Adamyk, Gerhardt,
Hess, and  Kong in which we develop a theoretical framework and
computational  tools for these twisted Hochschild homology theories.</p>
</div>
<pre> </pre>_______________________________________________<br>
Seminar web page:<br>
<a href="http://www2.math.binghamton.edu/p/seminars/topsem" rel="noreferrer" target="_blank">http://www2.math.binghamton.edu/p/seminars/topsem</a><br>
topsem mailing list:<br>
<a href="http://www1.math.binghamton.edu/mailman/listinfo/topsem" rel="noreferrer" target="_blank">http://www1.math.binghamton.edu/mailman/listinfo/topsem</a></blockquote></div>