<div dir="ltr">Hi everyone,<div><br></div><div>One more reminder about the Geometry and Topology seminar today! Links in the email copied below.</div><div><br></div><div>Cary</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Sep 7, 2020 at 5:06 PM Matthew R Haulmark <<a href="mailto:haulmark@binghamton.edu">haulmark@binghamton.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Hi everyone,</div><div><br></div><div>I am just writing to remind you what Abdul Zalloum of Queen's University will be speaking this Thursday from 2:50 - 3:50 pm. There will also be an opportunity to meet the speaker earlier in the afternoon from 12:30 - 1:30 pm. Below you will find links for the Zoom meetings and the title and abstract for Abdul's talk.</div><div><br></div><div>I hope to see you there!</div><div><br></div><div>-Matt<br></div><div><br></div><div>Zoom link for the seminar:<br></div><div>
<a href="https://binghamton.zoom.us/j/94057178271" style="box-sizing:border-box;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;color:rgb(62,141,239);outline:currentcolor none 0px;font-family:Lato,Helvetica,Arial;font-size:14px" target="_blank">https://binghamton.zoom.us/j/94057178271</a>

</div><div><br></div><div>Zoom link for the coffee with our speaker.</div><div><br></div><div>
<p style="margin:0px;text-indent:0px"><a href="https://binghamton.zoom.us/j/96674397432" target="_blank">https://binghamton.zoom.us/j/96674397432</a></p>
<p style="margin:0px;text-indent:0px"><br></p>
<p style="margin:0px;text-indent:0px">Meeting ID: 966
7439 7432</p>

</div><div><br></div><br><div>
<div style="font-family:Calibri,Arial,Helvetica,sans-serif;color:rgb(0,0,0)"><font size="2"><span><b>Title:</b> Hyperbolic-like boundaries of non-hyperbolic spaces.</span><br></font></div><font size="2"><span></span></font><div style="font-family:Calibri,Arial,Helvetica,sans-serif;color:rgb(0,0,0)"><font size="2"><span><span style="background-color:rgb(255,255,255)"><span style="font-family:Calibri,Arial,Helvetica,sans-serif;display:inline"><br></span></span></span></font></div><font size="2"><span></span></font><div style="font-family:Calibri,Arial,Helvetica,sans-serif;color:rgb(0,0,0)"><font size="2"><span><span style="background-color:rgb(255,255,255)"><span style="font-family:Calibri,Arial,Helvetica,sans-serif;display:inline"><b>Abstract:</b>
 While a quasi-isometry between two hyperbolic spaces X,Y induces a 
homeomorphism between their respective Gromov boundaries,
 the conclusion fails if X,Y are replaced by cocompact CAT(0) spaces. 
This has motivated a bulk of recent work introducing "hyperbolic-like" 
boundaries for CAT(0) spaces, and more generally, for proper geodesic 
metric spaces. For a proper geodesic metric space
 X, instead of considering the collection of<span> </span></span></span><b style="font-family:Calibri,Arial,Helvetica,sans-serif;background-color:rgb(255,255,255)">all<span> </span></b><span style="background-color:rgb(255,255,255)"><span style="font-family:Calibri,Arial,Helvetica,sans-serif;display:inline">geodesic
 rays shooting to infinity, if you collect only those</span></span><span style="background-color:rgb(255,255,255)"><span style="font-family:Calibri,Arial,Helvetica,sans-serif;margin:0px"> possessing
 some "hyperbolic-like" behavior, you obtain a boundary
 which is invariant under-quasi isometries. I will describe few such 
boundaries along with the way they relate to each other. Some of the 
results I will mention are joint with Incerti-Medici while others are 
joint with Qing and Murray."</span></span></span></font></div><br>

</div></div>
_______________________________________________<br>
Seminar web page:<br>
<a href="http://www2.math.binghamton.edu/p/seminars/topsem" rel="noreferrer" target="_blank">http://www2.math.binghamton.edu/p/seminars/topsem</a><br>
topsem mailing list:<br>
<a href="http://www1.math.binghamton.edu/mailman/listinfo/topsem" rel="noreferrer" target="_blank">http://www1.math.binghamton.edu/mailman/listinfo/topsem</a></blockquote></div>