<div dir="ltr">Hi everyone,<div><br></div><div>A reminder about our seminar and coffee (back at the usual time and link):</div><div><br></div><div>Cary<br><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">---------- Forwarded message ---------<br>From: <strong class="gmail_sendername" dir="auto">Matthew R Haulmark</strong> <span dir="auto"><<a href="mailto:haulmark@binghamton.edu">haulmark@binghamton.edu</a>></span><br>Date: Mon, Oct 12, 2020 at 8:10 PM<br>Subject: [Binghamton Geometry Topology Seminar] Seminar This Week<br>To: <<a href="mailto:topsem@math.binghamton.edu">topsem@math.binghamton.edu</a>><br></div><br><br><div dir="ltr">
<p>Hi everyone,</p><p>This week our speaker is our very own Daniel Studenmund. The title and abstract are below. The
links for the talk and coffee are:<br></p><p>Zoom link for the seminar, 2:50 - 3:50:<br>
<a href="https://binghamton.zoom.us/j/94057178271" rel="noreferrer" target="_blank">https://binghamton.zoom.us/j/94057178271</a><br>
<br>
Zoom link for the coffee, 12:30 - 1:30:<br>
<a href="https://binghamton.zoom.us/j/96674397432" rel="noreferrer" target="_blank">https://binghamton.zoom.us/j/96674397432</a>
</p><p><i>Title</i>: Vanishing in top-dimensional cohomology of $GL_n(\mathcal{O})$</p><p><i>Abstract</i>: In this talk, we will address one instance of the general<br>question: Given a group $G$, what is the cohomology of $G$ with<br>rational coefficients? A celebrated result of Borel and Serre implies<br>that $G = GL_n(\mathcal{O})$ has finite virtual cohomological<br>dimension (vcd) when $\mathcal{O}$ is the ring of integers of a number<br>field $K$. This implies that cohomology with rational coefficients<br>vanishes in dimensions greater than the vcd, but leaves open the<br>question of whether cohomology vanishes in the vcd. After surveying<br>some results in the area, I will discuss joint work with Andy Putman<br>which computes cohomology of $GL_n(\mathcal{O})$ in the vcd for<br>certain $\mathcal{O}$, and how there is a surprisingly subtle<br>dependence on the number ring $\mathcal{O}$.</p><p><br></p><p>See you on Thursday!</p><p>Best,</p><p>Matt<br>
</p>
</div>
_______________________________________________<br>
Seminar web page:<br>
<a href="http://www2.math.binghamton.edu/p/seminars/topsem" rel="noreferrer" target="_blank">http://www2.math.binghamton.edu/p/seminars/topsem</a><br>
topsem mailing list:<br>
<a href="http://www1.math.binghamton.edu/mailman/listinfo/topsem" rel="noreferrer" target="_blank">http://www1.math.binghamton.edu/mailman/listinfo/topsem</a></div></div></div>