<div dir="ltr">
<div>Hi everyone,</div><div><br></div><div>This week our speaker will be Wouter Van Limbeek from the University of Illinois-Chicago. Here are the details.<br></div><div>
</div><div><br></div><div><div>
<div>
<div><div><b><span>Title</span>: </b>Do thin groups have discrete <span>commensurators</span>?</div><div><br></div><div><b><span>Abstract</span>: </b>Let
G be a simple Lie group and \Gamma < G a lattice. In 1974, Margulis
proved that if the commensurator of \Gamma is dense, then \Gamma is
arithmetic. In 2015, Shalom asked if the same is true only assuming
\Gamma is Zariski-dense in G. I will report on recent progress on this
question for normal subgroups of lattices in rank 1 (e.g. hyperbolic
space) using ideas from infinite ergodic theory, Brownian motion, random
walks and harmonic maps. I will attempt to give a picture of how all
these ideas combine to give information on <span>commensurators</span>. This is joint work with D. Fisher <font face="Helvetica Neue, Helvetica, Arial, sans-serif" color="#333333"><span style="font-size:14px">and M. Mj.</span></font></div></div>
</div><font size="2">
</font><p><font size="2">
</font><br>
Zoom link for the seminar, 2:50 - 3:50:<br>
<a href="https://binghamton.zoom.us/j/94057178271" rel="noreferrer" target="_blank">https://binghamton.zoom.us/j/94057178271</a><br>
<br>
Zoom link for the coffee, 12:30 - 1:30:<br>
<a href="https://binghamton.zoom.us/j/96674397432" rel="noreferrer" target="_blank">https://binghamton.zoom.us/j/96674397432</a>
</p><p>Best,</p><p>Matt</p></div></div>
</div>