<div dir="ltr"><div dir="ltr"><div>Hi everyone,</div><div><br></div><div>This week our speaker will be Achim Krause (Muenster). We'll have the coffee hour at <b>12pm</b> on Thursday rather than 12:30pm. Here are the details.<br></div><div>
</div><div><br></div><div><div>
<div><div><font size="2"><span style="font-family:arial,sans-serif"><font style="background-color:transparent"><font><i>Title</i>: Witt vectors with coefficients and characteristic polynomials over non-commutative rings</font></font></span></font></div><div><font style="background-color:transparent" size="2" face="Liberation Serif, serif"><font><br></font></font></div><div><font size="2"><span style="font-family:arial,sans-serif"><font style="background-color:transparent"><font><i>Abstract:</i> </font></font></span></font>Witt vectors are classically discussed as a means to canonically lift
characteristic p objects to mixed characteristic. These "p-typical" Witt
vectors also have an analogue that combines all primes at once, the
"big Witt vectors". These show up naturally in the study of refinements
of topological Hochschild homology, as TR_0. Since the latter makes
sense more generally for noncommutative rings, and even with
coefficients in a bimodule, it is natural to ask for a similar
generalisation of Witt vectors on the algebraic side. We describe these
``Witt vectors with coefficients'' algebraically, and show that they
enjoy analogs of a lot of the usual structure of Witt vectors. We also
see how in this perspective, the trace from cyclic K-theory can be
interpreted as a kind of noncommutative characteristic polynomial.<br></div></div><p>
Zoom link for the seminar, 2:50 - 3:50:<br>
<a href="https://binghamton.zoom.us/j/94057178271" rel="noreferrer" target="_blank">https://binghamton.zoom.us/j/94057178271</a><br>
<br>
Zoom link for the coffee, 12:00 - 1:00:<br>
<a href="https://binghamton.zoom.us/j/96674397432" rel="noreferrer" target="_blank">https://binghamton.zoom.us/j/96674397432</a>
</p><p>Best,</p><p>Cary</p></div></div>
</div>
_______________________________________________<br>
Seminar web page:<br>
<a href="http://www2.math.binghamton.edu/p/seminars/topsem" rel="noreferrer" target="_blank">http://www2.math.binghamton.edu/p/seminars/topsem</a><br>
topsem mailing list:<br>
<a href="http://www1.math.binghamton.edu/mailman/listinfo/topsem" rel="noreferrer" target="_blank">http://www1.math.binghamton.edu/mailman/listinfo/topsem</a></div>