<div dir="ltr">Hi everyone,<br><div><br>This week I'll be speaking in our geometry and topology seminar on scissors congruence, title and abstract below. This will be an in person talk, on Thursday at 2:50pm in WH 100E.</div><div><br>We will also have a lunch social, meet at 12pm just outside WH100E. See you there!<br><br>Best,<br>Cary<br><div><br></div><div>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</div><div><b>Title:</b> Higher scissors congruence<br><b>Abstract:</b> Hilbert's Third Problem asks for sufficient conditions that determine when two polyhedra in three-dimensional Euclidean space are scissors congruent. Classically, the attempts to solve this problem (in this and other geometries) lead into group homology and algebraic K-theory, in a somewhat ad-hoc way. In the last decade, Zakharevich has shown that the presence of K-theory here is not ad-hoc, but is integral to the definition of scissors congruence itself. This leads to a natural notion of higher scissors congruence groups, in which the 0th group is the classical one that determines the answer to Hilbert's Third Problem.<br><br>In this talk, I'll describe a surprising recent result that these higher groups arise from a Thom spectrum. Its base space is the homotopy orbit space of a Tits complex, and the vector bundle is the negative tangent bundle of the underlying geometry. Using this result, we can explicitly compute the higher scissors congruence groups for the one-dimensional geometries, and give exact sequences that express them for the two-dimensional geometries. Much of this is joint work with Anna-Marie Bohmann, Teena Gerhardt, Mona Merling, and Inna Zakharevich.<br></div></div></div>