<div dir="ltr">Hi everyone,<div><br></div><div>A quick reminder that we are having lunch with Maxine Calle (University of Pennsylvania) today at 12pm, meet just outside WH100E, and that she is giving a talk today at 2:50pm. See you there!</div><div class="gmail-adn gmail-ads" style="border-left:none;padding:0px;display:flex;font-family:"Google Sans",Roboto,RobotoDraft,Helvetica,Arial,sans-serif;font-size:medium"><div class="gmail-gs" style="margin:0px;padding:0px 0px 20px;width:1676px"><div class="gmail-"><div id="gmail-:uj" class="gmail-ii gmail-gt" style="direction:ltr;margin:8px 0px 0px;padding:0px;font-size:0.875rem"><div id="gmail-:ui" class="gmail-a3s gmail-aiL" style="font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;font-kerning:auto;font-feature-settings:normal;font-stretch:normal;font-size:small;line-height:1.5;font-family:Arial,Helvetica,sans-serif;overflow:hidden"><div dir="ltr"><div><br>Best,<br>Cary<br></div><div><br></div><div>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br></div><div><div><b>Title: </b>Nested cobordisms and TQFTs</div><div><b>Abstract: </b>The folk theorem identifying 2-dimensional TFQTs with Frobenius algebras is a starting point for a lot of interesting mathematics, from mathematical physics to homotopy theory to higher category theory. In this talk, we will explore what happens if we replace the cobordism category with a category of nested cobordisms, where 2-dimensional surfaces may have embedded 1-dimensional submanifolds, and what kind of algebraic structure the corresponding nested TQFTs pick out. This is based on ongoing work joint with R. Hoekzema, L. Murray, N. Pacheco-Tallaj, C. Rovi, and S. Sridhar. </div></div></div><div class="gmail-yj6qo"></div><div class="gmail-adL"></div></div></div><div class="gmail-hi" style="padding:0px;width:auto;background:rgb(242,242,242);margin:0px;border-bottom-left-radius:1px;border-bottom-right-radius:1px"></div></div></div><div class="gmail-ajx" style="clear:both"></div></div><div class="gmail-gA gmail-gt" style="font-size:0.875rem;padding:0px;width:auto;border-bottom-left-radius:0px;border-bottom-right-radius:0px;border-top:none;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;font-family:"Google Sans",Roboto,RobotoDraft,Helvetica,Arial,sans-serif"><div class="gmail-gB gmail-acO" style="border-top:1px solid transparent;padding:0px"><div class="gmail-ip gmail-adB" style="border:none;margin:0px;padding:16px 0px"><div class="gmail-M9"><div id="gmail-:1gw"></div><div id="gmail-:1g3" class="gmail-aoI" role="region" aria-label="Re: Geometry and Topology seminar: Maxine Calle" style="background-color:transparent;font-size:0.875rem;overflow-y:visible;padding:0px 8px 0px 16px"><table id="gmail-:1g4" class="gmail-aoP gmail-HM" role="presentation" style="border-spacing:0px;table-layout:fixed;width:1732px"><tbody><tr><td class="gmail-aoY" style="padding:8px 0px;vertical-align:top;width:48px"><div id="gmail-:1gt" class="gmail-ajn gmail-aAa" style="height:40px;width:40px;border-radius:50%"></div><div id="gmail-:1gu" class="gmail-ajn" style="width:40px;height:40px;border-radius:50%"><img class="gmail-ajn" id="gmail-:ts_2" name=":ts" src="https://lh3.googleusercontent.com/a/ACg8ocJ7-stCstksPWiT4CvKmQWLxZ7YbpIJYlAAYyPw1g7jzTAQ=s40-p" style="width: 40px; height: 40px; border-radius: 50%; display: block;"></div></td><td id="gmail-:1ha" class="gmail-I5" style="padding:0px;border:1px solid transparent;border-radius:16px;box-sizing:border-box"><form id="gmail-:1hd" action="https://mail.google.com/mail/u/0/" method="POST" enctype="multipart/form-data" class="gmail-bAs"><div id="gmail-:1g0" style="height:0px"></div><div id="gmail-:1g1" style="clip: auto;"></div></form></td></tr></tbody></table></div></div></div></div></div><br class="gmail-Apple-interchange-newline"></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Sep 26, 2023 at 9:05 AM Cary Malkiewich <<a href="mailto:malkiewich@math.binghamton.edu">malkiewich@math.binghamton.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Hi everyone,<div><br></div><div>This week we are pleased to have Maxine Calle (University of Pennsylvania) speaking about TQFTs, title and abstract below. This will be an in person talk, on Thursday at 2:50pm in WH 100E.<br><br>We will also have a lunch social once the speaker gets in. This will probably be at 12pm or slightly after, meeting just outside WH100E. I'll send another update on Thursday. See you there!<br><br>Best,<br>Cary<br></div><div><br></div><div>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br></div><div><div><b>Title: </b>Nested cobordisms and TQFTs</div><div><b>Abstract: </b>The folk theorem identifying 2-dimensional TFQTs with Frobenius algebras is a starting point for a lot of interesting mathematics, from mathematical physics to homotopy theory to higher category theory. In this talk, we will explore what happens if we replace the cobordism category with a category of nested cobordisms, where 2-dimensional surfaces may have embedded 1-dimensional submanifolds, and what kind of algebraic structure the corresponding nested TQFTs pick out. This is based on ongoing work joint with R. Hoekzema, L. Murray, N. Pacheco-Tallaj, C. Rovi, and S. Sridhar. </div></div></div>
</blockquote></div>