<div dir="ltr">Hi everyone,<br><br>This week we are pleased to have Collin Bleak (University of St Andrews) speaking about Thompson's group V, title and abstract below. This will be a <b>hybrid</b> talk, which you can attend either in-person on Thursday at 2:50pm in WH 100E, or online at the link:<div><br><div><a href="https://binghamton.zoom.us/j/99386542764">https://binghamton.zoom.us/j/99386542764</a><br><br>We will also have a lunch social, meet at 12pm just outside WH100E. See you there!<br><br>Best,<br>Cary<br><br>=========================================<div>Title: On the maximal subgroups of R. Thompson's group <b>V</b></div><div><br>Ab<font face="arial, sans-serif">stract: <span style="color:rgb(0,0,0)">T</span><span style="color:rgb(0,0,0)">he maximal subgroups of various groups have been a focus of study since the highly influential O'Nan--Scott Theorem of 1979, which classified the maximal subgroups of the finite symmetric groups. Motivated by our perspective on R. Thompson's group </span><span style="color:rgb(0,0,0)"><b>V </b>as a natural generalisation of the finite symmetric and alternating groups to an infinite context,</span><span style="color:rgb(0,0,0)"> we ha</span><span style="color:rgb(0,0,0)">ve been exploring the maximal subgroup structure of<b> V</b>, working to move beyond the previously known maximal subgroups: the automorphic images of <b>T</b> and the set-wise stabilisers of finite sets of points in Cantor space (all with the same tail class).</span></font><div><span style="color:rgb(0,0,0)"><font face="arial, sans-serif"><br></font></span></div><div><font face="arial, sans-serif"><span style="color:rgb(0,0,0)">  We introduce the concept of a type system </span><span style="color:rgb(0,0,0)"><b>P</b></span><span style="color:rgb(0,0,0)">, that is, a partition on the set of finite words over the alphabet </span><span style="line-height:normal;color:rgb(0,0,0)"><b>{0,1}</b></span><span style="line-height:normal;color:rgb(0,0,0)"> </span><span style="color:rgb(0,0,0)">compatible with the partial action of Thompson's group </span><span style="line-height:normal;color:rgb(0,0,0)"><b>V</b></span><span style="color:rgb(0,0,0)">, and associate a subgroup </span><span style="line-height:normal;color:black"><b>Stab_V(P)</b></span><span style="color:rgb(0,0,0)"> of </span><span style="line-height:normal;color:rgb(0,0,0)"><b>V</b></span><span style="color:rgb(0,0,0)">. We classify the finite simple type systems and show that the stabilizers of various simple type systems, including all finite simple type systems, are maximal subgroups of </span><span style="line-height:normal;color:rgb(0,0,0)"><b>V</b></span><span style="line-height:normal;color:rgb(0,0,0)">.  A biproduct of our approach is that we can specify an uncountable family of pairwise non-isomorphic maximal subgroups of </span><span style="line-height:normal;color:rgb(0,0,0)"><b>V</b></span><span style="line-height:normal;color:rgb(0,0,0)">.</span><span style="color:rgb(0,0,0)"> </span></font></div><div><span style="color:rgb(0,0,0)"><font face="arial, sans-serif"><br></font></span></div><div><span style="color:rgb(0,0,0)"><font face="arial, sans-serif">Joint with Jim Belk, Martyn Quick, and Rachel Skipper.</font></span></div></div></div></div></div>